Системы искусственного интеллекта в медицине и здравоохранении

Искусственный интеллект в медицине сегодня

Направление медицины и здравоохранения уже сегодня считается одним из стратегических и перспективных с точки зрения эффективного внедрения ИИ. Использование ИИ может массово повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, повысить скорость разработки и выпуска новых лекарств и т.д.

Пожалуй, самым крупным и наиболее обсуждаемым проектом применения ИИ в медицине является американская корпорация IBM и ее когнитивная система IBM Watson. Первоначально это решение стали обучать и затем применять в онкологии, где IBM Watson уже длительное время помогает ставить точный диагноз и находить эффективный способ излечения для каждого из пациентов.

Для обучения IBM Watson было проанализировано 30 млрд медицинских снимков, для чего корпорации IBM пришлось купить компанию Merge Healthcare за 1 млрд. долл. К этому процессу потребовалось добавиться 50 млн. анонимных электронных медицинских карт, которые IBM получила в свое распоряжение, купив стартап Explorys.

Марк Крис, доктор медицинских наук, руководитель отдела торакальной онкологии, Мемориальный центр рака Слоан-Кеттеринг, слева, и Маной Саксена, генеральный менеджер IBM, Watson Solutions работают с первым основанным на IBM Watson решением для онкологии в Нью-Йорке 11 февраля 2013 года, источник http://fortune.com/ibm-watson-health-business-strategy/


В 2014 году IBM объявила о сотрудничестве с Johnson & Johnson и фармацевтической компанией Sanofi для работы над обучением Watson пониманию результатов научных исследований и клинических испытаний. По утверждению представителей компании, это позволит существенно сократить время клинических испытаний новых лекарств, а врачи смогут давать лекарства, наиболее подходящие конкретному пациенту. В том же 2014 году IBM объявила о разработке программного обеспечения Avicenna, способного интерпретировать и текст, и изображения. Для каждого типа данных используются отдельные алгоритмы. Так что в итоге Avicenna сможет понимать медицинские снимки и записи, и будет выполнять функции ассистента радиолога. Над похожей задачей работает и другой проект IBM — Medical Sieve. В данном случае речь идет о развитии искусственного интеллекта «медицинского ассистента», который сможет быстро анализировать сотни снимков на предмет отклонения от нормы. Это поможет радиологам и кардиологам заняться теми вопросами, в которых искусственный интеллект пока бессилен.

Недавно разработчики IBM совместно с Американской кардиологической ассоциациейприняли решение расширить возможности Watson, предложив помощь системы и кардиологам. По задумке авторов проекта, когнитивная облачная платформа в рамках этого проекта будет анализировать огромное количество медицинских данных, имеющих отношение к тому либо иному пациенту. В число этих данных входят изображения с УЗИ, рентгеновские снимки и все прочая графическая информация, позволяющая уточнить диагноз человека. В самом начале возможности Watson будут использоваться для поиска признаков стеноза аортального сердечного клапана. При стенозе отверстие аорты сужается за счет сращивания створок её клапана, что препятствует нормальному току крови из левого желудочка в аорту. Проблема в том, что выявить стеноз клапана не так и просто, несмотря на то, что это очень распространённый порок сердца у взрослых (70-85 % случаев среди всех пороков). Watson попытается определить, что он «видит» на медицинских изображениях: стеноз, опухоль, очаг инфекции или просто анатомическую аномалию – дать соответствующую оценку лечащему врачу, чтобы ускорить и повысит качество его работы.

Врачи Boston Children’s Hospital, занимающиеся редкими детскими болезнями, используют IBM Watson, чтобы ставить более точные диагнозы: искусственный интеллект будет искать необходимую информацию в клинических базах данных и научных журналах, которые хранятся в медицинском облаке Watson Health Cloud, http://www.healthcareitnews.com/news/boston-childrens-ibm-watson-take-rare-diseases
 


Кристофер Уолш, доктор медицинских наук, директор отдела генетики и геномики Бостонской детской больницы, работает с системой Watson for Genomics, источникhttps://www.cbsnews.com/news/ibm-watson-boston-childrens-combat-rare-pediatric-diseases/


Следует отметить, что проект Watson, как и любой новаторский продукт, не ставил перед создателями явные экономические цели. Затраты на этапы создания его компонент обычно превышали плановые, а его содержание весьма обременительно, если сравнивать с традиционными бюджетами в здравоохранении. Скорее его можно рассматривать как некий испытательный полигон, на котором можно обкатывать перспективные ИТ технологии и вдохновлять исследователей. А затем, уже проверенные и испытанные прототипы следует переводить в серийное производство, добиваясь более высоких показателей цена-качество и пригодности к эксплуатации в реальных условиях. Почти на каждой конференции по ИИ сегодня звучат доклады от исследователей стран мира с заявлениями «Мы делаем свой Watson, и он будет лучше оригинала».

С помощью системы искусственного интеллекта Emergent исследователям удалось выявить пять новых биомаркеров, на которые могут быть нацелены новые лекарства при лечении глаукомы. По словам ученых, для этого в систему ИИ вводится информация о более чем 600 тыс. специфических последовательностей ДНК 2,3 тыс. пациентов и данные о генных взаимодействиях.

Проект DeepMind Health, который ведет британская компания, входящая в состав Google создала систему, которая способна за несколько минут обработать сотни тысяч медицинских записей и выделять из них нужную информацию. Хотя этот проект, основанный на систематизации данных и машинном обучении, находится еще на ранней стадии, DeepMind уже сотрудничает с Глазной больницей Мурфильдса (Великобритания) с целью повышения качества лечения. Используя миллион анонимизированных, полученных с помощью томографа изображений глаз, исследователи стараются создать алгоритмы на базе технологий машинного обучения, которые бы помогали обнаружить ранние признаки двух глазных заболеваний — влажной возрастной макулярной дистрофии и диабетической ретинопатии. Похожим занимается и другая компания, входящая в Google — Verily. Специалисты этой фирмы используют искусственный интеллект и алгоритмы поисковика Google для того, чтобы проанализировать, что же делает человека здоровым.

Израильская компания MedyMatch Technology, в штате которой насчитывается всего 20 человек, разработала на базе ИИ и Big Data решение, благодаря которому врачи могут точнее диагностировать инсульт. Для этого в режиме реального времени система MedyMatch сравнивает снимок мозга пациента с сотнями тысяч других снимков, которые есть в ее «облаке». Известно, что инсульт может быть вызван двумя причинами: кровоизлиянием в головной мозг и тромбом. Соответственно, каждый из этих случаев требует разного подхода в лечении. Однако, по статистике, несмотря на улучшение в области КТ, количество ошибок при постановке диагноза за последние 30 лет не изменилось и составляет приблизительно 30%. То есть, почти в каждом третьем случае врач назначает пациенту неверное лечение, что приводит к печальным последствиям. Система MedyMatch способна отследить мельчайшие отклонения от нормы, которые не всегда способен заметить специалист, таким образом сводя вероятность ошибки в постановке диагноза и назначении лечения к минимуму.
 


Инструмент MedyMatch, работающий на базе ИИ, помогает командам скорой помощи быстро подтвердить или исключить кровотечение в мозге и провести соответствующее лечение,источник FierceBioTech


Все больше внимания в последнее время уделяется попыткам применять технологии ИИ не только при создании решений для врачей, но и для пациентов. Например, мобильное приложение британской компании Your.MD, запуск которого произошел в ноябре 2015 года. Эта программа использует технологии ИИ, машинного обучения и обработки естественного языка. Это позволяет пациенту просто сказать, к примеру, «У меня болит голова», а затем получить от смартфона рекомендации по последующим действиям и экспертный совет. Для этого система искусственного интеллекта Your.MD подключена к самой большой в мире карте симптомов, созданной все той же Your.MD: в ней учтено 1,4 млн симптомов, на идентификацию которых потребовалось более 350 тыс. часов. Каждый симптом был проверен специалистом британской системы здравоохранения. Искусственный интеллект выбирает наиболее подходящий симптом, основываясь на уникальном профиле владельца смартфона.

Другая компания, Medtronic, предлагает приложение, способное предсказать критическое снижение уровня сахара за три часа до события. Для этого Medtronic совместно с IBM используют технологии когнитивной аналитики к данным глюкометров и инсулиновых помп. С помощью приложения люди смогут лучше понимать влияние ежедневной активности на диабет. В рамках еще одного интересного проекта IBM, на этот раз совместного с диагностической компанией Pathway Genomics, создано приложение OME, объединяющее когнитивную и прецизионную медицину с генетикой. Цель приложения — предоставить пользователям персонализированную информацию для повышения качества жизни. Первая версия приложения включает в себя рекомендации по диете и упражнениям, сведения по метаболизму, которые зависят от генетических данных пользователя, карту с привычками пользователя и информацией о его состоянии здоровья. В будущем должны добавиться электронные медицинские карты, информация о страховке и другие дополнительные сведения.

Дополнительно к прямому клиническому применению, элементы ИИ могут быть использованы и во вспомогательных процессах медицинской организации. Например, уместным будет использовать ИИ при автоматической диагностике качества работы медицинской информационной системы, в вопросах обеспечения информационной безопасности. Системы ИИ могут помочь с выдачей рекомендаций по своевременной настройке справочников, тарифов или даже заметить аномальное поведение сотрудника и порекомендовать его руководителю направить его на обучение работе с системой, так как возникли подозрения в его невысоком профессионализме и замедленной реакции.

Обзор наиболее перспективные направлений развития




1. Автоматизированные методы диагностики, например, анализ рентгенологических или МРТ-снимков на предмет автоматического выявления патологии, микроскопический анализ биологического материала, автоматическое кодирование ЭКГ, электроэнцефалограмм и т.д. Хранение большого количества расшифрованных результатов диагностического обследования в электронном виде, когда имеются не только сами данные, но и формализованное заключение по ним, позволяют создавать действительно надежные и ценные программные продукты, способные если не заменить врача, то оказать ему эффективную помощь. Например, самостоятельно выявлять и обращать внимание на рутинную патологию, сокращать время и стоимость обследования, внедрять аутсорсинг и дистанционную диагностику.

2. Системы распознавания речи и понимания естественного языка могут оказать существенную помощь как врачу, так и пациенту. Начиная от уже обычной расшифровки речи и превращении ее в текст в качестве более продвинутого интерфейса общения с медицинскими информационными системами (МИС), обращения в Call-центр или голосового помощника – и далее до таких идей, как автоматический языковой перевод при поступлении иностранца, синтез речи при прочтении записей из МИС, робот-регистратор в приемном отделении больницы или регистратуре поликлиники, способный отвечать на простые вопросы и маршрутизировать пациентов и т.д.

3. Системы анализа и предсказания событий также являются вполне решаемыми уже сейчас задачами для ИИ, которые могут дать существенный эффект. Например, оперативный анализ изменений заболеваемости позволяет быстро предсказать изменение обращаемости пациентов в медицинские организации или потребность в лекарственных препаратах.

4. Системы автоматической классификации и сверки информации помогают связать информацию о пациенте, находящейся в различных формах в различных информационных системах. Например, построить интегральную электронную медицинскую карту из отдельных эпизодов, описанных с разной детальностью и без четкого или противоречивого структурирования информации. Перспективной является технология машинного анализа содержимого контента социальных сетей, интернет-порталов с целью быстрого получения социологической, демографической, маркетинговой информации о качестве работы системы здравоохранения и отдельных лечебных учреждений.

5. Автоматические чат-боты для поддержки пациентов могут оказать существенную помощь в повышении приверженности пациентов здоровому образу жизни и назначенному лечению. Уже сейчас чат-боты могут научится отвечать на рутинные вопросы, подсказывать тактику поведения пациентов в простых ситуациях, соединять пациента с нужным врачом в телемедицине, давать рекомендации по диете и т.д. Такое развитие здравоохранения в сторону самообслуживания и большей вовлеченности пациентов в охрану собственного здоровья без визита к врачу может сэкономить существенные финансовые ресурсы.

6. Развитие робототехники и мехатроники. Всем известный робот-хирург Da Vinci – это лишь первый шажочек в сторону если не замены врача на машину, то как минимум повышение качества работы медицинских сотрудников. Интеграция робототехники с ИИ рассматривается сейчас как один из перспективных направлений развития, способный переложить на машины рутинные манипуляции – в том числе и в медицине

Перспективы развития систем ИИ и систем помощи принятия врачебных решений в РФ